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Abstract: This paper describes a method for designing a nonlinear model predictive controller to be used in a 
lyophilization plant. The controller is based on a truncated fuzzy-neural Volterra predictive model and а simplified 
Newton method as optimization algorithm. The proposed approach is studied to control the product temperature in a 
lyophilization plant. The efficiency of the proposed approach is tested and proved by simulation experiments.  
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INTRODUCTION  
 

 
 

Lyophilization is a drying process in which the solvent and/or 
the suspension medium is crystallized at low temperatures and 
thereafter sublimed from the solid state directly into the 
vapour phase. Freeze-drying is mostly done with water as 
solvent. From the phase diagram of water can be seen the area 
in which this transfer from solid to vapour is possible. The 
drying transforms the ice or water in an amorphous phase into 
vapour. The goal of lyophilization is to produce a substance 
with good shelf stability and which is unchanged after 
reconstitution [1].  
 
On the other hand, the lyophilized products are very expensive 
due to the high energy demands to maintain vacuum and 
refrigeration processes and also the latent heat for sublimation, 
as well. For this purpose is needed to be used an improved 
control strategies based on intelligent control methods, such as 
Model Predictive Control. 
 
Model Predictive Control (MPC) has received a strong 
position when it comes to industrially implemented advanced 
control methodologies [2-3]. The main reason for this is the 
intuitive way MPC incorporates the process model in the 
controller design. In many problems relevant to the process 
control field today, the plant under control shows a strongly 
nonlinear behaviour. As a means to handle this, Nonlinear 
MPC (NMPC) is an often used method. NMPC, simply put, is 
model predictive control, where a nonlinear process model is 
used for prediction purposes, as opposed to a linear model for 
basic MPC [4-6]. 
 
Major industrial processes, are often nonlinear and the system 
nonlinearity cannot be ignored in practice. This has stimulated 
work in synthesizing MPC for use with a nonlinear analytical 
Volterra model and in Volterra series modelling. The main 
criticism in using Volterra series as nonlinear models lies in its 
large number of parameters needed to represent the kernels 
[7]. For this reason, in most practical solutions are imposed 
some structural restrictions to Volterra type models in order to 
attend a better model accuracy using a small number of 
parameters and to facilitate the identification procedures in 
notion to the computational effort. It has been shown, that any 
time-invariant nonlinear system can be approximated by a 
finite Volterra series to an arbitrary precision. Volterra models 

have the property to be linear in their parameters, i.e. the 
coefficients of their kernels, so that standard parameter 
estimation methods can be used [8]. 
 
In this paper, the proposed Volterra Fuzzy-Neural (VFN) 
model is implemented in MPC control scheme by using a 
simple fuzzy-neural approach and its efficiency is proved by 
simulation experiments in Matlab & Simulink environments to 
control the product temperature in a lyophilization plant. 
 

DESING OF FUZZY-NEURAL VOLTERRA MODEL 
 
Volterra models are widely used to model nonlinear processes. 
Since, with the increasing level of model nonlinearity, the 
number of its parameters increases sharply, in practice are 
mostly used truncated Volterra models [9]. In this approach, is 
considered the fuzzy-neural implementation of a second order 
Volterra model. As it is well known a wide class of nonlinear 
dynamic systems can be described in discrete time by NARX 
(Nonlinear AutoregRessive model with eXogenous inputs) 
input-output model. The used model in this paper is also taken 
in NARX type: 
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The unknown nonlinear functions fy can be approximated by 
Takagi-Sugeno type fuzzy rules: 
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where the Volterra kernels are: 
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The upper index (i)=1,2,…,N represents the number of the 
fuzzy rules, iA

~ is an activated Gaussian fuzzy set defined in 
the universe of discourse of the input vector x, the crisp 



coefficients a1, a2,...,any, b1, b2,...,bnu, c1,1, c2,1, ci,j are the 
coefficients into the Sugeno function fy and ny /nu  is the 
history dependence on the input/output. 
Finally, the actual implementations of the relevant fuzzy 
predictions have been obtained by appropriately shifting the 
inputs of the model. Therefore, a sequential algorithm based 
on the knowledge of current values of the regression vector, 
along with the fuzzy inference, computes: 
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Fuzzy-neural model identification. The identification 
procedure involves structure identification of the process and 
estimation of the unknown parameters. The structure of the 
neuro-fuzzy model depends on the number of membership 
functions, their shape and the coefficients into the functions fy 
in the consequent part of the rules (3). The task of model 
identification is to determine both groups of parameters of the 
Gaussian membership functions in the rule premise part and 
the linear parameters in the rule consequent part of the local 
models. A simplified fuzzy-neural approach is applied in this 
work, because of its simplicity and recurrent implementation 
of a tuning procedure for on-line applications [9].  
 
The learning algorithm for the fuzzy-neural model is based on 
minimization of an instant error measurement function 
between the real plant output and the process output, 
calculated by the fuzzy-neural model: 
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where y(k) denotes the measured real plant output and (k) ŷ is 
calculated by the fuzzy-neural network. The algorithm 
performs two steps gradient learning procedure. Assuming 
that βij is an adjustable ith coefficient for the Sugeno function fy 
into the jth activated rule (2) as a connection in the output 
neuron, the general parameter learning rule for the consequent 
parameters is: 
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After calculating the partial derivatives, the final recurrent 
predictions for each adjustable coefficient βij (a(i), b(i) or c(i)) 
and the free coefficient are obtained by the following 
equations: 
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The output error E can be used back directly to the input layer, 
where there are the premise (center- Ωij and the deviation- σij 
of a Gaussian fuzzy set) adjustable parameters. The error E is 
propagated through the links composed by the corresponded 
membership degrees, where the link weights are unit. Hence, 
the learning rule for the second group adjustable parameters in 
the input layer can be done by the same learning rule: 
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BASICS OF THE APPLIED MODEL PREDICTIVE 

CONTROL STRATEGY 
 
In recent years model predictive control has received a lot of 
attention in the control theory and applications. A model of the 
controlled process provides the forecast of the process output 
signal and the control signal is calculated in every step in a 

way that the difference between the reference and the output 
signal is minimized. The good system performance depends 
on model accuracy and parameters in the objective function. 
NMPC as it was applied with the VFN process model can be 
described in general with a block diagram, as it is depicted in 
(Fig. 1). 

 

Fig.1. Block diagram of the proposed MPC system. 

The selection of a minimization algorithm is a crucial issue in 
MPC, since this feature affects the computational efficiency of 
the control loop. Using the Newton method as optimization 
algorithm reduces the iterations to convergence in contrast to 
other techniques. The main cost of the Newton algorithm is 
the calculation of the Hessian matrix, but even with this 
overhead the low iteration numbers make the Newton faster 
algorithm for real time control [11]. As is well known, the 
Newton method is based on a quadratic approximation of an 
objective function as described: 
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This requires the evaluation of the Hessian and the gradient of 
the objective function. To implement the Newton method as 
an optimization algorithm is used the following recurrent 
equation: 
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where H is the Hessian matrix with the second order partial 
derivatives as elements. An important principle in the Newton 
method is that the cost function must be quadratic one and the 
Hessian matrix must be positive definite. 
 
Using the VFN model, the Optimization Algorithm computes 
the future control actions at each sampling period, by 
minimizing the following cost function: 
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where ŷ  is the predicted model output, r is the reference and 
u is the control action. The tuning parameters of the predictive 
controller are: N1, N2, Nu and ρ. N1 is the minimum prediction 
horizon, N2 is the maximum prediction horizon, Nu is the 
control horizon and ρ is the weighting factor penalizing 
changes in the control actions. When the criterion function is a 
quadratic one and there are no constraints on the control 
action, as well the cost function can be minimized analytically. 
If the criterion J is minimized with respect to the future 
control actions, then their optimal values can be calculated by 
applying the condition 0))(,( =∇ kUkJ , where each element 
of the gradient vector can be calculated using the following 
equation: 
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where R(k) is the system reference vector, (k) Ŷ is the vector of 
the predicted model output and U(k) is the vector of the 
control actions. 
 
Since, the VFN model consists a set of local sub models an 
explicit analytic solution of the above optimization problem 



can be obtained. A simplified method for calculation of the 
elements of ))(,( kUkJ∇  based on the VFN model, is 
proposed here. Hence, according to fy function (4) the 
unknown elements in (15) can be evaluated as follow:  
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Since, )1()()( −−=∆ kukuku  then UU ∂∂ /ˆ represents a 
matrix with zeroes and ones. As Newton method imposes the 
implementation of the second order derivative of the cost 
function we can rewrite: 
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Since )(/)(ˆ 22 kUkU ∂∂  always evaluates to zero, the second 

order derivatives )(/)(ˆ 22 kUkY ∂∂  must be calculated, starting 
from the above mentioned equations. The Newton algorithm 
then iterates using the following expression: 
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SIMULATION EXPERIMENTS 

 
Experimental plant description. During the last years, 
extensive efforts by industry and research have been made to 
predict and optimize the course of the lyophilization cycles in 
order to control the quality of the product and to minimize the 
costs [11]. On (Fig.2) a simplified diagram of the main 
components of a lyophilization plant is shown. The plant 
consists particularly of a drying chamber (1); temperature 
controlled shelves (2), a condenser (3) and a vacuum pump 
(4). The major purposes of the shelves are to cool and freeze 
or to supply heat to the product. This is supported by the 
shelves heater and refrigeration system (5). On those shelves 
the product is placed (6). The chamber is isolated from the 
condenser by the valve (7). The vacuum system is placed after 
the condenser. When the product is entirely frozen, the 
chamber is evacuated in order to increase the partial vapour 
water pressure difference between the frozen ice zone and the 
chamber. The shelf heating system starts to provide enthalpy 
for the sublimation process. The sublimation takes place at a 
moving ice front, which proceeds from the top of the frozen 
material downwards. The stage in which the remaining water 
content is further reduced is called secondary drying, which 
takes place at higher temperature. In this contribution is 
assumed only the first stage of the drying process called 
primary drying.  

The considered plant is a small scale lyophilization apparatus, 
for drying of 50 vials filled with glycine in water adjusted to 
pH 3, with hydrochloric acid. The schematic diagram on (Fig. 
2) depicts the sublimation process occurring at the interface 
which is located at a distance x from the vial bottom. During 
sublimation the interface moves in a negative direction, while 
the product height remains constant.  

     
Fig.2. Schematic diagram of a simplified Lyophilization plant. 

Simulation experiments. Simulation experiments in Matlab & 
Simulink environments to control the heating shelves 
temperature, in notion to temperature inside the frozen product 
layer, are made. According to this circumstance, the system is 
nonlinear and non stationary one and this is because during the 
sublimation process the properties of the product are changed.  
The following initial conditions for simulation experiments are 
assumed; N1=1, N2=3, Nu=3, system reference r=255 K, 
initial shelf temperature, Tsin = 228 K, initial thickness of the 
front x=0.0023 m, thickness of the product L=0.003 m. In the 
primary drying stage it is required to maintain the shelf 
temperature about 298 K, until the product is dried. This 
circumstance requires about 45 minutes of time for the 
primary drying stage of the process.  
 
The aim of the control system is to reduce the system error 
between the reference product temperature and the current 
product temperature at each sampling period, by calculating an 
appropriate control action, which will drive the drying process 
as fast as possible. The physical explanation of this is 
minimizing the energy for the drying process, as computing 
the optimized values for the heating shelves temperatures. 
According to this is defined a criterion in which the efficiency 
parameter Eef represents a notion between the cumulative 
energy which is minimized and the energy provided for the 
heating process [10]. 
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where: Ts – temperature of the heating shelves, Tr – 
reference product temperature, Tp – product temperature. As 
a reference criterion for the process is also taken the settling 
time of the process (tp). Evaluation of the model performance 
is demonstrated by Root Mean Squared Error (RMSE) and 
Root Squared Error (RSE) plots of the model. 
 
There were made comparative experiments with the proposed 
VFN model using the Newton method as optimization 
algorithm and the standard Gradient optimization algorithm, 
as reference. The validated plant model used as plant process 
for simulation in this study was derived from the physical laws 
of heat and mass transfer for a typical laboratory plant. The 
temperature versus time profile for the product and heating 
shelf temperatures for the representative vial is presented on 
(Fig.3) and (Fig.6). The primary drying phase for the cycle 
was started by increasing the shelf temperature from 228 K. 
The initial drop of the product temperature represents the 
sudden loss of heat due to sublimation and indicates the start 
of the primary drying. After, all of the unbound water has 
sublimated, the loss of heat due to sublimation vanishes and 
the enthalpy input from the shelf causes a sharp elevation of 
the product temperature. The VFN model responses of the 
RMSE and RSE are shown on (Fig.5) and (Fig.8). On (Fig.4) 



and (Fig.7) is demonstrated the decrease of the frozen layer 
interface x. 

0 500 1000 1500 2000
220

230

240

250

260

270

280

290

time, s

te
m

pe
ra

tu
re

, 
K

 

 

product temperature
temperature of the
heating shelves

 
Fig.3. Product and shelf temperatures using the Newton 
method. 
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Fig.4. Interface position using the Newton method. 
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Fig.5. RMSE and RSE responses of the model using the 
Newton method.  
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Fig.6. Product and shelf temperatures using the Gradient 
method. 
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Fig.7. Interface position using the Gradient method..  
 
Using the proposed Newton algorithm and the same initial 
conditions we can decrease the drying time in contrast to the 
classical Gradient optimization method. The use of the 
proposed control strategy is also an effective energy saving 

solution for the process, since the maximum allowed shelf 
temperature is under its maximum bound. 
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Fig.8. RMSE and RSE responses of the model using Gradient 
method. 

Table.1 

Method tp Eef RMSE 
Gradient 2828 0.000660 0.1735 
Newton 2490 0.000757 0.1575 

 
CONCLUSIONS  

 
It was presented in this paper a method for designing a 
nonlinear MPC. The controller is based on a truncated VFN 
model and Newton method as optimization algorithm. The 
proposed approach was used to control the product 
temperature in a lyophilization plant. The simulation 
experiments show the efficiency of the proposed control 
strategy. The product temperature in the frozen region rises 
according to lyophilization cycle regime requirements and 
constraints and using the Newton method as optimization 
procedure reduces the drying time in contrast to classical 
Gradient descent procedure. 
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